Problems 3: The Directional Derivative

1 Define the functions

i. $f : \mathbb{R}^2 \to \mathbb{R}, \mathbf{x} \mapsto x(x+y)$ and

ii. $g: \mathbb{R}^2 \to \mathbb{R}, \mathbf{x} \mapsto y(x-y)$.

Find the directional derivatives of f and g at $\mathbf{a} = (1,2)^T$ in the direction $\mathbf{v} = (2,-1)^T / \sqrt{5}$.

2. Find the directional derivative of $f : \mathbb{R}^2 \to \mathbb{R}$, $\mathbf{x} \to x^2 y$ at $\mathbf{a} = (2, 1)^T$ in the direction of the unit vector $\mathbf{v} = (1, -1)^T / \sqrt{2}$.

3. Define the function $h : \mathbb{R}^3 \to \mathbb{R}$, by $\mathbf{x} \to xy + yz + xz$. By verifying the definition, find the directional derivative of h at $\mathbf{a} = (1, 2, 3)^T$ in the direction of the unit vector $\mathbf{v} = (3, 2, 1)^T / \sqrt{14}$.

4. Define the function $f : \mathbb{R}^3 \to \mathbb{R}$, by $\mathbf{x} \to xy^2 z$. By verifying the definition, find the directional derivative of \mathbf{f} at $\mathbf{a} = (1, 3, -2)^T$ in the direction of the unit vector $\mathbf{v} = (-1, 1, -2)^T / \sqrt{6}$.

5. Define the function $\mathbf{f} : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$\mathbf{x} \to \left(\begin{array}{c} xy \\ yz \end{array}
ight),$$

where $\mathbf{x} = (x, y, z)^T$. By verifying the definition, find the directional derivative of \mathbf{f} at $\mathbf{a} = (1, 3, -2)^T$ in the direction of the unit vector $\mathbf{v} = (-1, 1, -2)^T / \sqrt{6}$. Do **not** look at the component functions separately.

6 Define the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$\mathbf{f}(\mathbf{x}) = \left(\begin{array}{c} x \left(x + y \right) \\ y \left(x - y \right) \end{array}\right).$$

Find the directional derivative of **f** at $\mathbf{a} = (1,2)^T$ in the direction $\mathbf{v} = (2,-1)^T / \sqrt{5}$.

Hint Notice the difference in wording between this question and the previous one; here I do not ask you to verify the definition.

7 Define the function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$\mathbf{f}(\mathbf{x}) = \left(\begin{array}{c} xy^2\\ x^2y \end{array}\right).$$

Find the directional derivative of **f** at $\mathbf{a} = (2,1)^T$ in the direction $\mathbf{v} = (1,-1)^T / \sqrt{5}$.

8. i. Let $\mathbf{c} \in \mathbb{R}^n$ be fixed. Let $f : \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$. Show that

$$d_{\mathbf{v}}f(\mathbf{a}) = f(\mathbf{v})$$

for all $\mathbf{a}, \mathbf{v} \in \mathbb{R}^n$.

ii. Let $M \in M_{m,n}(\mathbb{R})$ and $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto M\mathbf{x}$. Show that

$$d_{\mathbf{v}}\mathbf{f}(\mathbf{a}) = \mathbf{f}(\mathbf{v})$$

for all $\mathbf{a}, \mathbf{v} \in \mathbb{R}^n$.

iii. Can you generalise these results? I.e. of what type of function are $\mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$ and $\mathbf{x} \mapsto M\mathbf{x}$ examples?

9. Assume for the scalar-valued function $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ the directional derivative $d_{\mathbf{v}}f(\mathbf{a})$ exists for some $\mathbf{a}, \mathbf{v} \in \mathbb{R}^n$. Prove that

$$\lim_{t\to 0} f(\mathbf{a} + t\mathbf{v}) = f(\mathbf{a}) \,.$$

This is yet another example of the principle that if a function is differentiable at a point then it is continuous at that point. There are no new ideas in the proof, look back at previous proofs of differentiable implies continuous.

- 10. Define the function $f : \mathbb{R}^n \to \mathbb{R}$ by $\mathbf{x} \to |\mathbf{x}|$.
 - i. Prove that f is continuous in any direction at the origin.
 - ii. Show that in no direction through the origin does f have a directional derivative.

continuous in a direction \implies differentiable in that direction.

11. Assume $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$, $\mathbf{a} \in U$ and we have a unit vector $\mathbf{v} \in \mathbb{R}^n$. Prove that if the directional derivative $d_{\mathbf{v}}f(\mathbf{a})$ exists then so does the directional derivative $d_{-\mathbf{v}}f(\mathbf{a})$ and that it satisfies $d_{-\mathbf{v}}f(\mathbf{a}) = -d_{\mathbf{v}}f(\mathbf{a})$.

12. Using the definition of directional derivative calculate $d_1(x^2y)$ and $d_2(x^2y)$. Hence verify that these directional derivatives are the partial derivatives w.r.t x and y respectively.

13. Find the partial derivatives of the following functions:

- i. $f: U \to \mathbb{R}, \mathbf{x} \mapsto x \ln(xy)$ where $U = \{\mathbf{x} \in \mathbb{R}^2 : xy > 0\};$
- ii. $f : \mathbb{R}^3 \to \mathbb{R}, \mathbf{x} \to (x^2 + 2y^2 + z)^3;$
- iii. $f : \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \to |\mathbf{x}|$ for $\mathbf{x} \neq \mathbf{0}$. What goes wrong when $\mathbf{x} = \mathbf{0}$?

Hint In Part iii write out the definition of $|\mathbf{x}|$.

14. Define the function $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(\mathbf{x}) = \frac{x^2 y}{x^2 + y^2}$$
 if $\mathbf{x} \neq \mathbf{0}$; $f(\mathbf{0}) = 0$.

This as been previously seen in Question 11iii on Sheet 1.

- i. Prove that f is continuous at **0**.
- ii. Find the partial derivatives of f at **0**. (Hint return to the definition of derivative.)
- iii. Prove that $d_{\mathbf{v}} f(\mathbf{0})$ exists for all unit vectors \mathbf{v} , and, in fact, equals $f(\mathbf{v})$.
- **15**. Define the function $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(\mathbf{x}) = \frac{xy}{x^2 + y^2}$$
 if $\mathbf{x} \neq \mathbf{0}$; $f(\mathbf{0}) = 0$.

It was shown in Question 11ii on Sheet 1 that f does not have a limit at **0** and so is **not** continuous at $\mathbf{x} = \mathbf{0}$.

- i. Show that, nonetheless, the partial derivatives of f exist at **0**.
- ii. Prove that for all unit vectors $\mathbf{v} \neq \mathbf{e}_1$ or \mathbf{e}_2 the directional derivative $d_{\mathbf{v}} f(\mathbf{0})$ does not exist.

This example illustrates the point that

 $\forall i, d_i f(\mathbf{a}) \text{ exists } \not \longrightarrow \forall \mathbf{v}, d_{\mathbf{v}} f(\mathbf{a}) \text{ exists}$

Additional Questions 3

16. The Product Rule for directional derivatives

i. Assume for the scalar-valued functions $f, g : U \subseteq \mathbb{R}^n \to \mathbb{R}$ that the directional derivatives $d_{\mathbf{v}} f(\mathbf{a}), d_{\mathbf{v}} g(\mathbf{a})$ exist for some $\mathbf{a} \in U, \mathbf{v} \in \mathbb{R}^n$. Prove that the directional derivative $d_{\mathbf{v}}(fg)(\mathbf{a})$ exists and satisfies

$$d_{\mathbf{v}}(fg)(\mathbf{a}) = f(\mathbf{a}) d_{\mathbf{v}}g(\mathbf{a}) + g(\mathbf{a}) d_{\mathbf{v}}f(\mathbf{a}).$$

ii Use Part i with the result of Question 5 to independently check your answer to Question 4.

Hint in Part i no new ideas are needed; look back to last year at proofs for differentiating products of functions.

17. Extra questions for practice From first principles calculate the directional derivatives of the following functions.

i. $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^3, \mathbf{x} \mapsto (x+y, x-y, xy)^T$, at $\mathbf{a} = (2, -1)^T$ in the direction $\mathbf{v} = (1, -2)^T / \sqrt{5}$,

ii. $\mathbf{g}: \mathbb{R} \to \mathbb{R}^2, x \mapsto (x+1, x^2-2)^T$, at a = 1 in the direction of v = -1,

- iii. $h \circ \mathbf{f} : \mathbb{R}^2 \to \mathbb{R}$, with \mathbf{f} as in part i, and $h(\mathbf{x}) = xy^2 z$ for $\mathbf{x} \in \mathbb{R}^3$, at $\mathbf{a} = (2, -1)^T$ in the direction $\mathbf{v} = (1, -2)^T / \sqrt{5}$,
- iv. $\mathbf{f} \circ \mathbf{g} : \mathbb{R} \to \mathbb{R}^3$ at a = 1 in the direction of v = -1.

18. Some important functions from the course are

- the projection functions $p^i : \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto x^i$;
- the product function $p: \mathbb{R}^2 \mapsto \mathbb{R}, \mathbf{x} = (x, y)^T \mapsto xy$ and
- the quotient function $q: \mathbb{R} \times \mathbb{R}^{\dagger} \to \mathbb{R}, \mathbf{x} = (x, y)^T \mapsto x/y.$

Find $d_{\mathbf{v}}p^{i}(\mathbf{a})$; $d_{\mathbf{v}}p(\mathbf{a})$ for $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{2}$ and $d_{\mathbf{v}}q(\mathbf{a})$ for $\mathbf{a} \in \mathbb{R} \times \mathbb{R}^{\dagger}$ and $\mathbf{v} \in \mathbb{R}^{2}$.