MATH20132 Calculus of Several Variable.

Problems 3: The Directional Derivative

1 Define the functions
i. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \mapsto x(x+y)$ and
ii. $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \mapsto y(x-y)$.

Find the directional derivatives of f and g at $\mathbf{a}=(1,2)^{T}$ in the direction $\mathbf{v}=(2,-1)^{T} / \sqrt{5}$.
2. Find the directional derivative of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \rightarrow x^{2} y$ at $\mathbf{a}=(2,1)^{T}$ in the direction of the unit vector $\mathbf{v}=(1,-1)^{T} / \sqrt{2}$.
3. Define the function $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$, by $\mathbf{x} \rightarrow x y+y z+x z$. By verifying the definition, find the directional derivative of h at $\mathbf{a}=(1,2,3)^{T}$ in the direction of the unit vector $\mathbf{v}=(3,2,1)^{T} / \sqrt{14}$.
4. Define the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, by $\mathbf{x} \rightarrow x y^{2} z$. By verifying the definition, find the directional derivative of \mathbf{f} at $\mathbf{a}=(1,3,-2)^{T}$ in the direction of the unit vector $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$.
5. Define the function $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{x} \rightarrow\binom{x y}{y z}
$$

where $\mathbf{x}=(x, y, z)^{T}$. By verifying the definition, find the directional derivative of \mathbf{f} at $\mathbf{a}=(1,3,-2)^{T}$ in the direction of the unit vector $\mathbf{v}=(-1,1,-2)^{T} / \sqrt{6}$.
Do not look at the component functions separately.
6 Define the function $\mathrm{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{f}(\mathbf{x})=\binom{x(x+y)}{y(x-y)} .
$$

Find the directional derivative of \mathbf{f} at $\mathbf{a}=(1,2)^{T}$ in the direction $\mathbf{v}=$ $(2,-1)^{T} / \sqrt{5}$.

Hint Notice the difference in wording between this question and the previous one; here I do not ask you to verify the definition.

7 Define the function $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{f}(\mathbf{x})=\binom{x y^{2}}{x^{2} y} .
$$

Find the directional derivative of \mathbf{f} at $\mathbf{a}=(2,1)^{T}$ in the direction $\mathbf{v}=$ $(1,-1)^{T} / \sqrt{5}$.
8. i. Let $\mathbf{c} \in \mathbb{R}^{n}$ be fixed. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto \mathbf{c} \bullet \mathbf{x}$. Show that

$$
d_{\mathbf{v}} f(\mathbf{a})=f(\mathbf{v})
$$

for all $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$.
ii. Let $M \in M_{m, n}(\mathbb{R})$ and $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \mapsto M \mathbf{x}$. Show that

$$
d_{\mathbf{v}} \mathbf{f}(\mathbf{a})=\mathbf{f}(\mathbf{v})
$$

for all $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$.
iii. Can you generalise these results? I.e. of what type of function are $\mathrm{x} \mapsto \mathrm{c} \bullet \mathrm{x}$ and $\mathrm{x} \mapsto M \mathrm{x}$ examples?
9. Assume for the scalar-valued function $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ exists for some $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{n}$. Prove that

$$
\lim _{t \rightarrow 0} f(\mathbf{a}+t \mathbf{v})=f(\mathbf{a}) .
$$

This is yet another example of the principle that if a function is differentiable at a point then it is continuous at that point. There are no new ideas in the proof, look back at previous proofs of differentiable implies continuous.
10. Define the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\mathbf{x} \rightarrow|\mathbf{x}|$.
i. Prove that f is continuous in any direction at the origin.
ii. Show that in no direction through the origin does f have a directional derivative.

```
continuous in a direction }\not=>\mathrm{ differentiable in that direction.
```

11. Assume $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{a} \in U$ and we have a unit vector $\mathbf{v} \in$ \mathbb{R}^{n}. Prove that if the directional derivative $d_{\mathbf{v}} f(\mathbf{a})$ exists then so does the directional derivative $d_{-\mathbf{v}} f(\mathbf{a})$ and that it satisfies $d_{-\mathbf{v}} f(\mathbf{a})=-d_{\mathbf{v}} f(\mathbf{a})$.
12. Using the definition of directional derivative calculate $d_{1}\left(x^{2} y\right)$ and $d_{2}\left(x^{2} y\right)$. Hence verify that these directional derivatives are the partial derivatives w.r.t x and y respectively.
13. Find the partial derivatives of the following functions:
i. $\quad f: U \rightarrow \mathbb{R}, \mathbf{x} \mapsto x \ln (x y) \quad$ where $U=\left\{\mathbf{x} \in \mathbb{R}^{2}: x y>0\right\}$;
ii. $\quad f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \mathbf{x} \rightarrow\left(x^{2}+2 y^{2}+z\right)^{3}$;
iii. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \rightarrow|\mathbf{x}|$ for $\mathbf{x} \neq \mathbf{0}$. What goes wrong when $\mathbf{x}=\mathbf{0}$?

Hint In Part iii write out the definition of $|\mathbf{x}|$.
14. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x^{2} y}{x^{2}+y^{2}} \quad \text { if } \quad \mathbf{x} \neq \mathbf{0} ; \quad f(\mathbf{0})=0
$$

This as been previously seen in Question 11iii on Sheet 1.
i. Prove that f is continuous at $\mathbf{0}$.
ii. Find the partial derivatives of f at $\mathbf{0}$. (Hint return to the definition of derivative.)
iii. Prove that $d_{\mathbf{v}} f(\mathbf{0})$ exists for all unit vectors \mathbf{v}, and, in fact, equals $f(\mathbf{v})$.
15. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x y}{x^{2}+y^{2}} \quad \text { if } \quad \mathbf{x} \neq \mathbf{0} ; \quad f(\mathbf{0})=0
$$

It was shown in Question 11ii on Sheet 1 that f does not have a limit at $\mathbf{0}$ and so is not continuous at $\mathbf{x}=\mathbf{0}$.
i. Show that, nonetheless, the partial derivatives of f exist at $\mathbf{0}$.
ii. Prove that for all unit vectors $\mathbf{v} \neq \mathbf{e}_{1}$ or \mathbf{e}_{2} the directional derivative $d_{\mathbf{v}} f(\mathbf{0})$ does not exist.

This example illustrates the point that
$\forall i, d_{i} f(\mathbf{a})$ exists $\nRightarrow \quad \forall \mathbf{v}, d_{\mathbf{v}} f(\mathbf{a})$ exists

Additional Questions 3

16. The Product Rule for directional derivatives

i. Assume for the scalar-valued functions $f, g: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ that the directional derivatives $d_{\mathbf{v}} f(\mathbf{a}), d_{\mathbf{v}} g(\mathbf{a})$ exist for some $\mathbf{a} \in U, \mathbf{v} \in \mathbb{R}^{n}$. Prove that the directional derivative $d_{\mathbf{v}}(f g)(\mathbf{a})$ exists and satisfies

$$
d_{\mathbf{v}}(f g)(\mathbf{a})=f(\mathbf{a}) d_{\mathbf{v}} g(\mathbf{a})+g(\mathbf{a}) d_{\mathbf{v}} f(\mathbf{a}) .
$$

ii Use Part i with the result of Question 5 to independently check your answer to Question 4.

Hint in Part i no new ideas are needed; look back to last year at proofs for differentiating products of functions.
17. Extra questions for practice From first principles calculate the directional derivatives of the following functions.
i. $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \mathbf{x} \mapsto(x+y, x-y, x y)^{T}$, at $\mathbf{a}=(2,-1)^{T}$ in the direction $\mathbf{v}=(1,-2)^{T} / \sqrt{5}$,
ii. $\mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{2}, x \mapsto\left(x+1, x^{2}-2\right)^{T}$, at $a=1$ in the direction of $v=-1$,
iii. $\quad h \circ \mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}$, with \mathbf{f} as in part i, and $h(\mathbf{x})=x y^{2} z$ for $\mathbf{x} \in \mathbb{R}^{3}$, at $\mathbf{a}=(2,-1)^{T}$ in the direction $\mathbf{v}=(1,-2)^{T} / \sqrt{5}$,
iv. $\quad \mathbf{f} \circ \mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ at $a=1$ in the direction of $v=-1$.
18. Some important functions from the course are

- the projection functions $p^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{x} \mapsto x^{i}$;
- the product function $p: \mathbb{R}^{2} \mapsto \mathbb{R}, \mathbf{x}=(x, y)^{T} \mapsto x y$ and
- the quotient function $q: \mathbb{R} \times \mathbb{R}^{\dagger} \rightarrow \mathbb{R}, \mathbf{x}=(x, y)^{T} \mapsto x / y$.

Find $d_{\mathbf{v}} p^{i}(\mathbf{a}) ; d_{\mathbf{v}} p(\mathbf{a})$ for $\mathbf{a}, \mathbf{v} \in \mathbb{R}^{2}$ and $d_{\mathbf{v}} q(\mathbf{a})$ for $\mathbf{a} \in \mathbb{R} \times \mathbb{R}^{\dagger}$ and $\mathbf{v} \in \mathbb{R}^{2}$.

